Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings

نویسندگان

  • Zaki N. Zahran
  • Eman A. Mohamed
  • Yoshinori Naruta
چکیده

Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion.

A very efficient electrogenerated Fe(0) porphyrin catalyst was obtained by substituting in tetraphenylporphyrin two of the opposite phenyl rings by ortho-, ortho'-phenol groups while the other two are perfluorinated. It proves to be an excellent catalyst of the CO2-to-CO conversion as to selectivity (the CO faradaic yield is nearly quantitative), overpotential, and turnover frequency. Benchmark...

متن کامل

Catalytic CO2-to-CO conversion in water by covalently functionalized carbon nanotubes with a molecular iron catalyst.

The covalent grafting of an Fe porphyrin on carbon nanotubes led to efficient electroreduction of CO2 into CO in water (pH 7.3). CO was obtained with high selectivity and turnover at 0.5 V overpotential. The grafting strategy may be further extended to various conductive and semi-conductive surfaces.

متن کامل

Enhanced catalytic decomposition of a phosphate triester by modularly accessible bimetallic porphyrin dyads and dimersw

Cofacial porphyrin assemblies have attracted great attention over the past several decades due to their unusual photophysical properties, a coordination environment that can accommodate two or more metal centers, and structural rigidity. Of particular interest to us is the design of assemblies suitable for applications involving molecular recognition and catalysis. In such cases, manipulating t...

متن کامل

Fine-tuning of a ferrocene[porphyrin]ITO redox cascade for efficient sequential electron transfer commenced by an S2 photoexcited special-pair mimic.

A systematic series of ferrocene/porphyrin redox cascade architectures was assembled through a slipped-cofacial porphyrin dimer on ITO electrode in optimizing the anodic photocurrent generation to perform the highest quantum yield compared to reported values on ITO electrodes.

متن کامل

Tandem cofacial stacks of porphyrin-phthalocyanine dyads through complementary coordination.

A novel straightforward methodology to organize discrete heterogeneous stacks of porphyrin and phthalocyanine employed an imidazolyl-to-zinc complementary coordination protocol for a Zn(II) phthalocyanine that contains an imidazolyl terminal with an ethynylporphyrin as a coplanar spacer. Structural elucidation was performed by means of size-exclusion chromatography, spectral titration, and NMR ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016